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Abstract 

Modelling the behaviour and evolution of the physical phenomena which surround us 

remains a major challenge to the data science community. Modern enhancements in data 

acquisition, storage, processing and transmission, highlight the need for more accurate and 

reliable tools, techniques and skills for extracting knowledge from the available and highly 

dynamic large volumes of data. Typically, modelling of natural phenomena rely on the 

deployment of mathematical models quite often built on the foundations of stringent 

assumptions. In many applications some of the underlying assumptions are violated and 

the models fail to yield closed form or unique solutions. We propose a generic approach to 

modelling sunspots numbers using integrated adaptive unsupervised and supervised 

models. We adopt the data’s natural Gaussian distributional properties and use the early 

patterns as the basis for unsupervised and supervised modelling. Comparing multiple early 

patterns for each recorded cycle extracted at different time periods to the corresponding 

full cycles reveals that the first 3 years provide a sufficient basis for predicting the cycle’s 

peak. Based on multiple simulations we develop a binary cut-off point of low and high 

solar activity which we use to label the data and apply Support Vector Machines (SVM) 

for predicting new cycles. Repeated SVM runs using repeatedly improved data parameters 

show that the approach yields greater accuracy and reliability than conventional 

approaches mainly because it simultaneously traces anomalies and provides a robust basis 

for model selection. Finally, we describe how the method can be adapted to other 

unsupervised and supervised methods with different applications. 
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1 Introduction 
The overall behaviour of the solar magnetic activity cycles has attracted the attention of 

scientists for many years. Solar flares affect our planet in different ways - including 

ejecting plasma and energetic particles and potentially causing geomagnetic storms and 

damaging satellites (Reames, 2002). The interactions between the sun's surface plasma and 

its magnetic field are known to generate sunspots - clustered patterns in non-random 

positions above and below the equator (Schwabe, 1843 and Wolf, 1852). Tracking the 

general behaviour of sunspots provides solar scientists with a way of monitoring and 

measuring solar activity and particularly how it impinges on life on earth. Correlations 

between space and terrestrial weather have been indicated in solar studies dating back 

many years such as those by Siscoe (1978), Pielke et al., (1998) and Rycroft et al., (2000). 

Glasby (2002) used observational data from a set of three eleven-year sunspot cycles to 

develop comprehensive hypotheses on how the planets trigger natural phenomena such as 

sunspots and earthquakes. Various methods have been used in studying the cycle’s strength 

and duration. Notable examples are in Kitiashvili and Kosovichev (2009) who used the 

data assimilation method and in Choudhuri et al., (2007) and Dikpati et al., (2006) who 

used a rotational solar dynamo-based approach in to predict the 24
th

 cycle. Qahwaji and 

Colak (2007) used a variety of machine learning techniques for short-term predictions of 

solar flares. However, the issue of model complexity for disparate methods on disparate 

data sources is best addressed via adaptability rather than comparability. Consequently, 

minimising inherent randomness in training and test data requires novel adaptive methods 

of data analysis (Mwitondi and Said, 2011 and Mwitondi and Bugrien, 2010).  

 

We propose an adaptive and robust approach to modelling capable of providing real-time 

predictions of the solar activity cycles based on its 11-year frequency of sunspots. The 

method seeks to uncover naturally arising structures in data by searching for generalising 

parameter levels and adapts them to supervised modelling of the data. The paper is 

organised as follows. Methods are described in Section 2 followed by data analyses and 

discussions in Section 3 and concluding remarks and potential new directions in Section 4.  

2 Methods 
The main modelling strategy combines sunspots historical data’s distributional parameter 

estimates with specific hypothesised conditions as the basis for supervised modelling.  
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2.1 Data description and visualisation 

We adopt the beginning and ending periods of solar cycles in as in Kane (2002) in which 

the first cycle starts in March 1755 and ends in June 1766 with the onset of the current 

(24
th

) cycle being December 2008 with each cycle lasting approximately 11-years. The 

LHS panel of Figure 1 provides a spider plot for the mean and variation patterns of the 23 

cycles and the onset of the 24
th

 cycle. The RHS panel exhibits the intensity of the cycles 

(ordered bottom-up). Our strategy adapts the discernible high and low solar activities as 

model inputs for detecting solar activity patterns over both short and long periods of time. 

 

Figure 1: The spider web (LHS) and contour image (RHS) showing sunspots intensity 

The relative sunspot number    (     )  where   denotes the number of sunspot 

groups,   is the total number of distinct spots and     is scale factor that accommodates 

specific conditions of the observer, derives from the definitions and refinements in Wolf 

(1848, 1852 and 1861) and detailed in Izenman (1983). Wolf (1852) used eight estimates 

of sunspots periods for each set of “clear minima” and six “clear maxima” to determine the 

duration of the cycles’ periodicity as  ̂  
∑    

 
 

  
   

∑   
 

  
   

            . The 16 periods are 

denoted by              and weighted by   
   

  ⁄  where    is the estimated error.  

 

Although the 11-year solar cycle has since been adopted as a given constant, interest in 

averages of sunspots numbers over short periods of time has continued to grow. Ross 

(2009) reports that in 2008 the sun experienced one of the lowest numbers of sunspots in 

many years - the 7
th

 lowest since 1749 next only to sunspot numbers recorded back in 1913. 

Apparently, accurate and reliable monitoring of the highly complex solar magnetic activity 
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variations require, not only large amounts of data taken over a long period of time, but also 

adaptive and robust modelling techniques a variant of which we propose below.  

2.2 Sunspots cycles vector parameterisation and key assumptions 

In a 2-D space, sunspots numbers form bell-shaped distributions, suggesting that the cycles 

follow a fairly similar distribution – describable by the multivariate Gaussian distribution 

as shown in the LHS panel of Figure 2 representing two K-Means (MacQueen, 1967) 

clusters. The RHS panel is the corresponding density based on the Mclust(.) model-based 

algorithm (Fraley and Raftery, 2006) and the Gaussian mixture model 

∏ ∑   

 

   

 

   

  (        )  ∏     

 

   

(              )  ( ) 

where    denotes the sunspots numbers,   is the number of components,    ( )  is a 

Gaussian mixture normal distribution,    is the prior probability of class membership and 

     are class allocations. Figure 2 derives from the original data in NOOA (2012) and 

exhibits two cluster patterns with lower and upper means 28.88 and 110.60 respectively. 

Thus, if we let the cycles form a binary pattern of “lows” and “highs” we can define 
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where      denote low and high cycles, we can use the parameter estimates   {   } to 

track the behaviour of the cycles. If the cycles are correlated the density in (2) becomes 
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Figure 2: K-Means partitioned sunspot cycles (LHS) and corresponding densities (RHS) 

We build the concept of a notionally infinite data (an infinitely long vector S) with 

parameters    ∫   ( )
 

  
     

  ∫ (    )
  

  
 ( )    Statistically, the high-

peaked (more than normal) and low-peaked (less than normal) cycles imply high and low 

solar activities respectively while those skewed to the right imply few increases and 

frequent decreases in solar activity and vice versa. Thus, we examine the initial and 

subsequent patterns of the cycles in order to separate the “lows” from the “highs”. Finally, 

the maximum likelihood estimates (MLEs) of these random finite mixture densities, are 

estimated and passed on to a predictive model as outlined in the algorithm below. 

Begin 

Cluster            into finite groups, say,                                          

Extract      {             }  
          

    {         :                               {   } 

Extract      {            
                 

}    {     }                           

Set   {         } 

Initialise    {   }  (       ̅) so that     {
     (             )   

                               
  

Obtain MLE of      (            ) 

For m:=1 to M (Large positive integer) 

 ̂  
∑    

 
   

 
   ̂   

∑      
 
   

∑    
 
   

      ̂  √
∑    (    ̂ )  

   

∑    
 
   

  

Update        
Update            
Update MLE of      (    )       (    )     

End For 

Select best model 

Use the model to predict new cycles     
  

 

Output best model parameters 
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Determine whether     
     or     

                    
∑  (         

 ) 
   

 
  ̂    

End 

 

The above algorithm adapts the EM converging features described in McLachlan and 

Krishnan (1996) and in McLachlan and Peele (2000). Its generic form suits virtually any 

supervised model. This paper adopts Support Vector Machines (SVM). 

2.3 Support Vector Machines (SVM) for supervised modelling 

Support Vector Machines (SVM) describe a kernel-based discriminant function the 

mechanics of which rely on supervised learning of the underlying discriminating rules 

from the training data Cortes and Vapnik (1995). To put it in context, let the “high” and 

“low” cycles in our modified set {             }  ,    {    }  and       be 

separable as in Figure 3. Then the points lying on H satisfy the equation        

where   is normal to the hyper-plane, 
   

‖ ‖
 is the perpendicular distance from H to the 

origin and ‖ ‖ is the Euclidean norm of     Note that the points on the hyper-planes 

{     }  satisfy the equations         both with normal   and distance to the 

original 
      

‖ ‖
 which means that the gap {     }  

   

‖ ‖
. We need to find hyper-planes 

maximising the gap (minimising‖ ‖ ) subject to    (         ) . The numbers 

lying on {     } are called support vectors - the core “supporters” of the optimal location 

of the decision surface and the hardest to classify. Intuitively, the SVM allocation rule is 

{
                     
                     

   (         )     (5) 
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Figure 3: A graphical illustration of an SVM classifier margin in 2-D 

 

The general formulation of SVM discriminating kernel due to Cortes and Vapnik (1995) is  

 ( )  ∑  

 

   

 (    )     ( ) 

in which    represents the Lagrange multiplier summed over the values for which       

The upper index   denotes the number of support vectors as described above. SVM 

solution relies on the Lagrangian formulation of the problem – an optimisation method 

requiring     positive multipliers (          ) for each of the inequalities on the RHS of 

Equation 5. The general formulation of the Lagrangian is as follows  

  
‖ ‖ 

 
 ∑    (         )  ∑  

 

   

 ( )

 

   

 

SVM solution is obtained by minimising Equation 7 with respect to   and a and 

simultaneously requiring that 
  

   
      or equivalently maximising L and require that 
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both   and a disappear. The latter implies that   ∑         and ∑         

transforming Equation 7 into its dual equivalent    ∑    
 

 
∑                   The 

SVM model weights are calculated as the product of the support vector coefficients and 

their values and used in forming the allocation rule. Other than the support vectors (    ) 

the remaining data points have      – these are those lying on the two hyper-planes 

{     }    (         )or beyond them if   (         )    

3 Analyses and discussions 
This section provides a two-stage analysis of the sunspots data in Figure 2 using a 

combination of graphical visualisation and predictive modelling techniques. It seeks to 

establish whether sunspots follow identifiable patterns which can be used as inputs in 

predicting future sunspots or indeed other related phenomena.  

3.1 Initial sunspots patterns and maximisation of internal parameters  

Figure 4 exhibits the low and high cycles separation based on the cut-off points above 

alongside their corresponding overall bi-modal densities. It is based on the maximum 

number of sun spots reached by the full cycles and the number reached in the first 30 and 

40 months. The cut-off point in the LHS panel is set to the mean of the averaged maximum 

early sun spots which, in this case, is 109 - separating the low cycles 1, 5, 6, 7, 9, 10, 12, 

13, 14 and 16 from the highs 2, 3, 4, 8, 11, 15, 17, 18, 19, 20, 21, 22 and 23. The densities 

in the RHS panel exhibit the emerging bi-modality as a function of time. 

 

Figure 4: Omega cut-off (LHS) and the corresponding bi-modal density (RHS) 

It clearly emerges from Figure 4 that each solar activity cycle can be predicted via 

graphical visualisation of its early patterns. In particular, the maximum values reached by 
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each cycle appear to provide an insight into the overall activity of the cycle before it starts 

to subside. The foregoing structural detection of patterns in the sunspots data amounts to 

unsupervised modelling. Adopting these patterns as a guide to data labelling rule yields the 

two class priors as   ̂  
∑    

 
   

 
       ̂       with      computed as above. 

 

Both plots in Figure 5 exhibit a strong positive correlation between the sunspots mean and 

standard deviation vectors. Intuitively, we can reasonably focus on only one of these 

parameters. Implementation of the algorithm in Section 2.2 is based on those premises.   

 

Figure 5: Positively correlated sunspots means and standard deviations  

The four panels in Figure 6 are based on the maximisation of averaged estimated internal 

parameters – the means (north-western panel in Figure 6) and class probabilities which, in 

this case, are equally likely (south-eastern panel of Figure 6). Although not graphically 

presented here, group variances were also maximised in the same way.    
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Figure 6: Maximisation of group means and class separation 

Based on the established bi-modal nature of the cycles (south-eastern panel in Figure 6) 

and the fact that the average early patterns for cycle 24 fall below the cut-off point, it is 

reasonable to suggest that it will be a low activity cycle. Next, we implement SVM 

modelling based on the initial patterns followed by a similar implementation based on 

maximised estimated parameters for the purpose of re-defining the class labels. 

3.2 SVM-based supervised modelling 

Results from SVM modelling based on the initial class patterns with prior probabilities 

 ̂       ̂  gave an averaged accuracy of 58% on a cost range of 0.005 to 5 and a training 

sample of 500. Posterior class probabilities conditioned on maximised averages of the 

early low and high group means reached an average accuracy of 98% on the same cost 

range and training sample size. The resulting support vectors are shown in Figure 7 with 

the horizontal and vertical axes correspond to the support vectors and indices respectively. 
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Figure 7: Support vectors for the initial patterns (LHS) and maximised parameters (RHS) 

In R (2011) the SVM model weights for each of the support vectors are obtained as a cross 

product of the model coefficients and support vectors. Other useful SVM outputs include 

the individual probabilities and decision values as graphically exhibited in Figure 8. Notice 

the difference between the lower accuracy case (north-western panel) - highlighting the 

random nature of class allocation – and the higher accuracy model (south western panel) 

showing clear concentrations of  ̂       ̂  in either side of the class boundary.    

 

Figure 8: Sun cycles class probabilities 

Both the observations corresponding to the vectors in Figure 7 and to the probabilities and 

decision values in Figure 8 can easily be identified by indexing.   



Page 12 of 14 

 

4 Concluding remarks and potential future directions 
Capturing and gaining full understanding of all the attributes which characterise a 

phenomenon are all it takes to describe it. Generally, empirical results are more reliable if 

they not only depend on the modelling tools and techniques but also on clearly defined 

states of the object of investigation. Predicting solar activity cycles remains one of the 

major challenges the scientific community faces with intricacy being compared to 

predicting, say, the severity of next year’s winter. In this weather analogue, if all that is 

available is a long vector of temperature readings over many years, the only sensible 

approach is to search for naturally arising structures in the data with the hope that if 

uncovered they may provide potentially useful information. This paper adopted the 

foregoing philosophy and so it sought to develop a predictive framework for modelling 

sunspots data using inherent Gaussian distributional properties in the data. As in Colak and 

Qahwaji (2009), the paper relied on a continuous flow of data for prediction, but rather 

than assessing model accuracy on the NOAA benchmark, an SVM model was trained and 

tested on a notionally infinite dataset of cycles. For the EM algorithm emphasis was on its 

convergence features and their relevance to the detection of solar activity cycles.  

 

By examining multiple sets of observations from the onset of each cycle via graphical 

visualisation early patterns of sun cycles and their binary nature were determined. 

Comparing multiple early patterns for each recorded cycle extracted at different time 

periods to the corresponding full cycles revealed that the first 3 years provide a sufficient 

basis for predicting the cycle’s peak. The patterns were then adapted as inputs into an 

integrated unsupervised and supervised modelling algorithm. Based on multiple 

simulations a binary cut-off point was developed – demarcating low from high solar 

activity. The cut-off was then used to label the data and apply Support Vector Machines 

(SVM) for predicting new cycles using a novel parameter generating approach. The novel 

method’s mechanics are geared towards simultaneously tracing anomalies via a robust and 

adaptive approach. Repeated SVM runs using repeatedly improved parameters showed that 

the approach yields greater accuracy and reliability than conventional approaches. The 

paper’s main substance can be described as an enhancement of algorithmic methods for 

learning underlying rules from data. Although it adopted SVM for implementation, the 

general approach can easily be implemented in any domain-partitioning method.  
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